MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing Nearest Correlation Matrix via Low-Rank ODE’s Based Technique

Author(s)
Rehman, Mutti-Ur; Alzabut, Jehad; Abodayeh, Kamaleldin
Thumbnail
Downloadsymmetry-12-01824.pdf (761.0Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
For <i>n</i>-dimensional real-valued matrix <i>A</i>, the computation of nearest correlation matrix; that is, a symmetric, positive semi-definite, unit diagonal and off-diagonal entries between <inline-formula><math display="inline"><semantics><mrow><mo>&minus;</mo><mn>1</mn></mrow></semantics></math></inline-formula> and 1 is a problem that arises in the finance industry where the correlations exist between the stocks. The proposed methodology presented in this article computes the admissible perturbation matrix and a perturbation level to shift the negative spectrum of perturbed matrix to become non-negative or strictly positive. The solution to optimization problems constructs a gradient system of ordinary differential equations that turn over the desired perturbation matrix. Numerical testing provides enough evidence for the shifting of the negative spectrum and the computation of nearest correlation matrix.
Date issued
2020-11-04
URI
https://hdl.handle.net/1721.1/131319
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Symmetry 12 (11): 1824 (2020)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.