MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preparation of MgCo2O4/graphite composites as cathode materials for magnesium-ion batteries

Author(s)
Gu, Siyong; Hsieh, Chien-Te; Huq, Mohammad M; Hsu, Jo-Pei; Ashraf Gandomi, Yasser; Li, Jianlin; ... Show more Show less
Thumbnail
Download10008_2018_4186_ReferencePDF.pdf (1.971Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Magnesium-ion batteries are fabricated with MgCo2O4/graphite composites as the cathode material. MgCo2O4 nanoparticles are prepared using a co-precipitation method. A three-dimensional mixing process is utilized to mechanically decorate MgCo2O4 nanoparticles on graphite particles. The MgCo2O4 spinel crystals of size ranging from 20 to 70 nm on micrometer-sized graphite chunks are analyzed by using X-ray diffraction and scanning electron microscopy. The electrochemical properties of the as-prepared composites are well characterized by cyclic voltammetry, charge and discharge cycling, and electrochemical impedance spectroscopy (EIS). Surprisingly, the MgCo2O4/graphite composite with a relatively low proportion of MgCo2O4, compared with the other as-prepared composites, achieves the highest specific capacity of 180 mAh g−1 at a C rate of 0.05 C. EIS results suggest that the electrical conductivity of the composite material is an increasing function of the graphite proportion. The superior performance of the MgCo2O4/graphite composite could be ascribed to the decoration of nanosized MgCo2O4 particles as well as to the increased conductivity provided by graphite.
Date issued
2019-03-15
URI
https://hdl.handle.net/1721.1/131359
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Urban Studies and Planning
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.