MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization

Author(s)
Hosseini, Reshad; Sra, Suvrit
Thumbnail
Download10107_2019_1381_ReferencePDF.pdf (783.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We consider maximum likelihood estimation for Gaussian Mixture Models (Gmm s). This task is almost invariably solved (in theory and practice) via the Expectation Maximization (EM) algorithm. EM owes its success to various factors, of which is its ability to fulfill positive definiteness constraints in closed form is of key importance. We propose an alternative to EM grounded in the Riemannian geometry of positive definite matrices, using which we cast Gmm parameter estimation as a Riemannian optimization problem. Surprisingly, such an out-of-the-box Riemannian formulation completely fails and proves much inferior to EM. This motivates us to take a closer look at the problem geometry, and derive a better formulation that is much more amenable to Riemannian optimization. We then develop Riemannian batch and stochastic gradient algorithms that outperform EM, often substantially. We provide a non-asymptotic convergence analysis for our stochastic method, which is also the first (to our knowledge) such global analysis for Riemannian stochastic gradient. Numerous empirical results are included to demonstrate the effectiveness of our methods.
Date issued
2019-03-19
URI
https://hdl.handle.net/1721.1/131361
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.