MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust monotone submodular function maximization

Author(s)
Orlin, James B; Schulz, Andreas S; Udwani, Rajan
Thumbnail
Download10107_2018_1320_ReferencePDF.pdf (342.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to $$\tau $$ τ elements from the chosen set. For the fundamental case of $$\tau =1$$ τ = 1 , we give a deterministic $$(1-1/e)-1/\varTheta (m)$$ ( 1 - 1 / e ) - 1 / Θ ( m ) approximation algorithm, where m is an input parameter and number of queries scale as $$O(n^{m+1})$$ O ( n m + 1 ) . In the process, we develop a deterministic $$(1-1/e)-1/\varTheta (m)$$ ( 1 - 1 / e ) - 1 / Θ ( m ) approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized $$(1-1/e)-\epsilon $$ ( 1 - 1 / e ) - ϵ approximation for constant $$\tau $$ τ and $$\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}$$ ϵ ≤ 1 Ω ~ ( τ ) , making $$O(n^{1/\epsilon ^3})$$ O ( n 1 / ϵ 3 ) queries. Further, for $$\tau \ll \sqrt{k}$$ τ ≪ k , we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
Date issued
2018-09-15
URI
https://hdl.handle.net/1721.1/131367
Department
Sloan School of Management
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.