MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic optimization in supply chain networks: averaging robust solutions

Author(s)
Bertsimas, Dimitris; Youssef, Nataly
Thumbnail
Download11590_2019_1405_ReferencePDF.pdf (746.2Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We propose a novel robust optimization approach to analyze and optimize the expected performance of supply chain networks. We model uncertainty in the demand at the sink nodes via polyhedral sets which are inspired from the limit laws of probability. We characterize the uncertainty sets by variability parameters which control the degree of conservatism of the model, and thus the level of probabilistic protection. At each level, and following the steps of the traditional robust optimization approach, we obtain worst case values which directly depend on the values of the variability parameters. We go beyond the traditional robust approach and treat the variability parameters as random variables. This allows us to devise a methodology to approximate and optimize the expected behavior via averaging the worst case values over the possible realizations of the variability parameters. Unlike stochastic analysis and optimization, our approach replaces the high-dimensional problem of evaluating expectations with a low-dimensional approximation that is inspired by probabilistic limit laws. We illustrate our approach by finding optimal base-stock and affine policies for fairly complex supply chain networks. Our computations suggest that our methodology (a) generates optimal base-stock levels that match the optimal solutions obtained via stochastic optimization within no more than 4 iterations, (b) yields optimal affine policies which often times exhibit better results compared to optimal base-stock policies, and (c) provides optimal policies that consistently outperform the solutions obtained via the traditional robust optimization approach.
Date issued
2019-02-25
URI
https://hdl.handle.net/1721.1/131385
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.