Show simple item record

dc.contributor.authorBernstein, Joseph
dc.contributor.authorBezrukavnikov, Roman
dc.contributor.authorKazhdan, David
dc.date.accessioned2021-09-20T17:16:52Z
dc.date.available2021-09-20T17:16:52Z
dc.date.issued2018-01-23
dc.identifier.urihttps://hdl.handle.net/1721.1/131387
dc.description.abstractAbstract We use geometry of the wonderful compactification to obtain a new proof of the relation between Deligne–Lusztig (or Alvis–Curtis) duality for p-adic groups and homological duality. This provides a new way to introduce an involution on the set of irreducible representations of the group which has been defined by A. Zelevinsky for $$G=GL(n)$$ G = G L ( n ) and by A.-M. Aubert in general (less direct geometric approaches to this duality have been developed earlier by Schneider-Stuhler and by the second author). As a byproduct, we describe the Serre functor for representations of a p-adic group.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00029-018-0391-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleDeligne–Lusztig duality and wonderful compactificationen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:10:27Z
dc.language.rfc3066en
dc.rights.holderSpringer International Publishing AG, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:10:27Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record