MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of demand–supply gaps in public transit systems based on census and GTFS data: a case study of Calgary, Canada

Author(s)
Kaeoruean, Koragot; Phithakkitnukoon, Santi; Demissie, Merkebe G; Kattan, Lina; Ratti, Carlo
Thumbnail
Download12469_2020_252_ReferencePDF.pdf (3.253Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Bridging the gap between demand and supply in transit service is crucial for public transportation management, as planning actions can be implemented to generate supply in high demand areas or to improve upon inefficient deployment of transit service in low transit demand areas. This study aims to introduce feasible approaches for measuring gap types 1 and 2. Gap type 1 measures the gap between public transit capacity and the number of public transit riders per area, while gap type 2 measures the gap between demand and supply as a normalized index. Gap type 1 provides a value that is more realistic than gap type 2, but it requires detailed passenger data that is not always readily available. Gap type 2 is a practical alternative when the detailed passenger data is unavailable because it uses a weighting scheme to estimate demand values. It also uses a newly proposed normalization method called M-score, which allows for a longitudinal gap analysis where yearly gap patterns and trends can be observed and compared. A 5-year gap analysis of Calgary transit is used as a case study. This work presents a new perspective of hourly gaps and proposes a gap measurement approach that contributes to public transit system planning and service improvement.
Date issued
2020-09-03
URI
https://hdl.handle.net/1721.1/131390
Department
Senseable City Laboratory
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.