Show simple item record

dc.contributor.authorLosev, Ivan
dc.contributor.authorShelley-Abrahamson, Seth
dc.date.accessioned2021-09-20T17:16:53Z
dc.date.available2021-09-20T17:16:53Z
dc.date.issued2018-01-23
dc.identifier.urihttps://hdl.handle.net/1721.1/131391
dc.description.abstractAbstract For a complex reflection group W with reflection representation $$\mathfrak {h}$$ h , we define and study a natural filtration by Serre subcategories of the category $$\mathcal {O}_c(W, \mathfrak {h})$$ O c ( W , h ) of representations of the rational Cherednik algebra $$H_c(W, \mathfrak {h})$$ H c ( W , h ) . This filtration refines the filtration by supports and is analogous to the Harish-Chandra series appearing in the representation theory of finite groups of Lie type. Using the monodromy of the Bezrukavnikov–Etingof parabolic restriction functors, we show that the subquotients of this filtration are equivalent to categories of finite-dimensional representations over generalized Hecke algebras. When W is a finite Coxeter group, we give a method for producing explicit presentations of these generalized Hecke algebras in terms of finite-type Iwahori–Hecke algebras. This yields a method for counting the number of irreducible objects in $$\mathcal {O}_c(W, \mathfrak {h})$$ O c ( W , h ) of given support. We apply these techniques to count the number of irreducible representations in $$\mathcal {O}_c(W, \mathfrak {h})$$ O c ( W , h ) of given support for all exceptional Coxeter groups W and all parameters c, including the unequal parameter case. This completes the classification of the finite-dimensional irreducible representations of $$\mathcal {O}_c(W, \mathfrak {h})$$ O c ( W , h ) for exceptional Coxeter groups W in many new cases.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00029-018-0390-6en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleOn refined filtration by supports for rational Cherednik categories $$\mathcal {O}$$ Oen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:10:34Z
dc.language.rfc3066en
dc.rights.holderSpringer International Publishing AG, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:10:34Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record