MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Actionable insights with less data: guiding early building design decisions with streamlined probabilistic life cycle assessment

Author(s)
Hester, Joshua; Miller, T. R; Gregory, Jeremy; Kirchain, Randolph
Thumbnail
Download11367_2017_1431_ReferencePDF.pdf (1.794Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Purpose Two obstacles that impede wider use of life cycle assessment (LCA) are its time- and data-intensiveness and the credibility surrounding its results—challenges that grow with the complexity of the product being analyzed. To guide the critical early-design stages of a complicated product like a building, it is important to be able to rapidly estimate environmental impacts with limited information, quantify the resulting uncertainty, and identify critical parameters where more detail is needed. Methods The authors have developed the Building Attribute to Impact Algorithm (BAIA) to demonstrate the use of streamlined (not scope-limiting), probabilistic LCA for guiding the design of a building from early stages of the design process when many aspects of the design are unknown or undecided. Early-design uncertainty is accommodated through under-specification—characterizing the design using the available level of detail—and capturing the resulting variability in predicted impacts through Monte Carlo simulations. Probabilistic triage with sensitivity analyses identifies which uncertain attributes should be specified further to increase the precision of the results. The speed of the analyses allows for sequentially refining key attributes and re-running the analyses until the predicted impacts are precise enough to inform decision-making, such as choosing a preferable design alternative. Results and discussion Twelve design variants for a hypothetical single-family residential building are analyzed. As information is sequentially added to each variant, the significance of the difference in performance between each variant pair is calculated to determine when enough information has been added to resolve the designs (identify which design is preferable) with high confidence. At the sixth step in the analysis, all variant pairs whose mean impacts differ by at least 4% are resolvable with 90% confidence, even though only six attributes are specified and dozens of attributes remain under-specified. Furthermore, the comparative results for each variant pair are validated against a set of conventional LCA results, showing that BAIA identifies the correct preferable design among each resolvable pair at this step. Conclusions Iterative specification guided by probabilistic triage can help identify promising early-design alternatives even when details are only provided for key attributes. The analysis of hypothetical design variants demonstrates that BAIA is both efficient (arrives at statistically defensible conclusions from design variant comparisons based on few pieces of information) and effective (identifies the same preferable design variants as conventional LCAs).
Date issued
2018-01-08
URI
https://hdl.handle.net/1721.1/131393
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.