MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart

Author(s)
Horvath, Markus A; Varela, Claudia E; Dolan, Eimear B; Whyte, William; Monahan, David S; Payne, Christopher J; Wamala, Isaac A; Vasilyev, Nikolay V; Pigula, Frank A; Mooney, David J; Walsh, Conor J; Duffy, Garry P; Roche, Ellen T; ... Show more Show less
Thumbnail
Download10439_2018_2046_ReferencePDF.pdf (1.778Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Efficient coupling of soft robotic cardiac assist devices to the external surface of the heart is crucial to augment cardiac function and represents a hurdle to translation of this technology. In this work, we compare various fixation strategies for local and global coupling of a direct cardiac compression sleeve to the heart. For basal fixation, we find that a sutured Velcro band adheres the strongest to the epicardium. Next, we demonstrate that a mesh-based sleeve coupled to the myocardium improves function in an acute porcine heart failure model. Then, we analyze the biological integration of global interface material candidates (medical mesh and silicone) in a healthy and infarcted murine model and show that a mesh interface yields superior mechanical coupling via pull-off force, histology, and microcomputed tomography. These results can inform the design of a therapeutic approach where a mesh-based soft robotic DCC is implanted, allowed to biologically integrate with the epicardium, and actuated for active assistance at a later timepoint. This strategy may result in more efficient coupling of extracardiac sleeves to heart tissue, and lead to increased augmentation of heart function in end-stage heart failure patients.
Date issued
2018-05-15
URI
https://hdl.handle.net/1721.1/131413
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.