Show simple item record

dc.contributor.authorAli, Asra
dc.contributor.authorMani, Nitya
dc.date.accessioned2021-09-20T17:16:58Z
dc.date.available2021-09-20T17:16:58Z
dc.date.issued2018-01-06
dc.identifier.urihttps://hdl.handle.net/1721.1/131415
dc.description.abstractAbstract Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution L-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution L-values when the underlying elliptic curve has modular degree 1 with conductor N such that $$\text {genus}(X_0(N)) = 1$$ genus ( X 0 ( N ) ) = 1 .en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00013-017-1112-6en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleShifted convolution L-series values for elliptic curvesen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:09:47Z
dc.language.rfc3066en
dc.rights.holderSpringer International Publishing AG, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:09:47Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record