Show simple item record

dc.contributor.authorBufetov, Alexey
dc.contributor.authorMatveev, Konstantin
dc.date.accessioned2021-09-20T17:16:59Z
dc.date.available2021-09-20T17:16:59Z
dc.date.issued2018-09-25
dc.identifier.urihttps://hdl.handle.net/1721.1/131417
dc.description.abstractAbstract We introduce a randomized Hall–Littlewood RSK algorithm and study its combinatorial and probabilistic properties. On the probabilistic side, a new model—the Hall–Littlewood RSK field—is introduced. Its various degenerations contain known objects (the stochastic six vertex model, the asymmetric simple exclusion process) as well as a variety of new ones. We provide formulas for a rich class of observables of these models, extending existing results about Macdonald processes. On the combinatorial side, we establish analogs of properties of the classical RSK algorithm: invertibility, symmetry, and a “bijectivization” of the skew-Cauchy identity.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00029-018-0442-yen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleHall–Littlewood RSK fielden_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:11:06Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:11:06Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record