MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic Modulation of Device-Arterial Coupling to Determine Cardiac Output and Vascular Resistance

Author(s)
Keller, Steven P; Chang, Brian Y; Tan, Qing; Zhang, Zhengyang; El Katerji, Ahmad; Edelman, Elazer R; ... Show more Show less
Thumbnail
Download10439_2020_2510_ReferencePDF.pdf (850.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Clinical adoption of mechanical circulatory support for shock is rapidly expanding. Achieving optimal therapeutic benefit requires metrics of state to guide titration and weaning of support. Using the transvalvular positioning of a percutaneous ventricular assist device (pVAD), device:heart interactions are leveraged to determine cardiac output (CO) and systemic vascular resistance (SVR) near-continuously without disrupting therapeutic function. An automated algorithm rapidly alternates between device support levels to dynamically modulate physiological response. Employing a two-element lumped parameter model of the vasculature, SVR and CO are quantified directly from measurements obtained by the pVAD without external calibration or invasive catheters. The approach was validated in an acute porcine model across a range of cardiac (CO = 3–10.6 L/min) and vascular (SVR = 501–1897 dyn s/cm5) states. Cardiac output calculations closely correlated (r = 0.82) to measurements obtained by the pulmonary artery catheter-based thermodilution method with a mean bias of 0.109 L/min and limits of agreement from − 1.67 to 1.89 L/min. SVR was also closely correlated (r = 0.86) to traditional catheter-based measurements with a mean bias of 62.1 dyn s/cm5 and limits of agreement from − 260 to 384 dyn s/cm5. Use of diagnostics integrated into therapeutic device function enables the potential for optimizing support to improve outcomes for cardiogenic shock.
Date issued
2020-04-13
URI
https://hdl.handle.net/1721.1/131452
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.