MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

0-Cycles on Grassmannians as Representations of Projective Groups

Author(s)
Bezrukavnikov, R.; Rovinsky, M.
Thumbnail
Download40598_2019_126_ReferencePDF.pdf (329.2Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Let F be an infinite division ring, V be a left F-vector space, $$r\ge 1$$r≥1 be an integer. We study the structure of the representation of the linear group $$\mathrm {GL}_F(V)$$GLF(V) in the vector space of formal finite linear combinations of r-dimensional vector subspaces of V with coefficients in a field. This gives a series of natural examples of irreducible infinite-dimensional representations of projective groups. These representations are non-smooth if F is locally compact and non-discrete.
Date issued
2019-11-05
URI
https://hdl.handle.net/1721.1/131470
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.