MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

0-Cycles on Grassmannians as Representations of Projective Groups

Author(s)
Bezrukavnikov, R.; Rovinsky, M.
Thumbnail
Download40598_2019_126_ReferencePDF.pdf (329.2Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Let F be an infinite division ring, V be a left F-vector space, $$r\ge 1$$r≥1 be an integer. We study the structure of the representation of the linear group $$\mathrm {GL}_F(V)$$GLF(V) in the vector space of formal finite linear combinations of r-dimensional vector subspaces of V with coefficients in a field. This gives a series of natural examples of irreducible infinite-dimensional representations of projective groups. These representations are non-smooth if F is locally compact and non-discrete.
Date issued
2019-11-05
URI
https://hdl.handle.net/1721.1/131470
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.