| dc.contributor.author | Gillman, Nate |  | 
| dc.contributor.author | Kural, Michael |  | 
| dc.contributor.author | Pascadi, Alexandru |  | 
| dc.contributor.author | Peng, Junyao |  | 
| dc.contributor.author | Sah, Ashwin |  | 
| dc.date.accessioned | 2021-09-20T17:17:13Z |  | 
| dc.date.available | 2021-09-20T17:17:13Z |  | 
| dc.date.issued | 2019-12-19 |  | 
| dc.identifier.uri | https://hdl.handle.net/1721.1/131475 |  | 
| dc.description.abstract | Abstract
Fix a non-CM elliptic curve $$E/\mathbb {Q}$$E/Q, and let $$a_E(p) = p + 1 - \#E(\mathbb {F}_p)$$aE(p)=p+1-#E(Fp) denote the trace of Frobenius at p. The Sato–Tate conjecture gives the limiting distribution $$\mu _{ST}$$μST of $$a_E(p)/(2\sqrt{p})$$aE(p)/(2p) within $$[-1, 1]$$[-1,1]. We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval $$I\subseteq [-1, 1]$$I⊆[-1,1], let $$p_{I,n}$$pI,n denote the nth prime such that $$a_E(p)/(2\sqrt{p})\in I$$aE(p)/(2p)∈I. We show $$\liminf _{n\rightarrow \infty }(p_{I,n+m}-p_{I,n}) < \infty $$lim infn→∞(pI,n+m-pI,n)<∞ for all $$m\ge 1$$m≥1 for “most” intervals, and in particular, for all I with $$\mu _{ST}(I)\ge 0.36$$μST(I)≥0.36. Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes. | en_US | 
| dc.publisher | Springer International Publishing | en_US | 
| dc.relation.isversionof | https://doi.org/10.1007/s40993-019-0184-8 | en_US | 
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US | 
| dc.source | Springer International Publishing | en_US | 
| dc.title | Patterns of primes in the Sato–Tate conjecture | en_US | 
| dc.type | Article | en_US | 
| dc.identifier.citation | Research in Number Theory. 2019 Dec 19;6(1):9 | en_US | 
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics |  | 
| dc.eprint.version | Author's final manuscript | en_US | 
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US | 
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US | 
| dc.date.updated | 2020-09-24T21:18:31Z |  | 
| dc.language.rfc3066 | en |  | 
| dc.rights.holder | Springer Nature Switzerland AG |  | 
| dspace.embargo.terms | Y |  | 
| dspace.date.submission | 2020-09-24T21:18:30Z |  | 
| mit.license | PUBLISHER_POLICY |  | 
| mit.metadata.status | Authority Work and Publication Information Needed |  |