Show simple item record

dc.contributor.authorGillman, Nate
dc.contributor.authorKural, Michael
dc.contributor.authorPascadi, Alexandru
dc.contributor.authorPeng, Junyao
dc.contributor.authorSah, Ashwin
dc.date.accessioned2021-09-20T17:17:13Z
dc.date.available2021-09-20T17:17:13Z
dc.date.issued2019-12-19
dc.identifier.urihttps://hdl.handle.net/1721.1/131475
dc.description.abstractAbstract Fix a non-CM elliptic curve $$E/\mathbb {Q}$$E/Q, and let $$a_E(p) = p + 1 - \#E(\mathbb {F}_p)$$aE(p)=p+1-#E(Fp) denote the trace of Frobenius at p. The Sato–Tate conjecture gives the limiting distribution $$\mu _{ST}$$μST of $$a_E(p)/(2\sqrt{p})$$aE(p)/(2p) within $$[-1, 1]$$[-1,1]. We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval $$I\subseteq [-1, 1]$$I⊆[-1,1], let $$p_{I,n}$$pI,n denote the nth prime such that $$a_E(p)/(2\sqrt{p})\in I$$aE(p)/(2p)∈I. We show $$\liminf _{n\rightarrow \infty }(p_{I,n+m}-p_{I,n}) < \infty $$lim infn→∞(pI,n+m-pI,n)<∞ for all $$m\ge 1$$m≥1 for “most” intervals, and in particular, for all I with $$\mu _{ST}(I)\ge 0.36$$μST(I)≥0.36. Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-019-0184-8en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titlePatterns of primes in the Sato–Tate conjectureen_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2019 Dec 19;6(1):9en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:18:31Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:18:30Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record