Show simple item record

dc.contributor.authorPropp, Oron Y
dc.date.accessioned2021-09-20T17:17:13Z
dc.date.available2021-09-20T17:17:13Z
dc.date.issued2018-02-20
dc.identifier.urihttps://hdl.handle.net/1721.1/131476
dc.description.abstractAbstract Let $$\ell $$ ℓ be an odd prime and d a positive integer. We determine when there exists a degree-d number field K and an elliptic curve E / K with $$j(E)\in \mathbb {Q}\setminus \{0,1728\}$$ j ( E ) ∈ Q \ { 0 , 1728 } for which $$E(K)_\mathrm {tors}$$ E ( K ) tors contains a point of order $$\ell $$ ℓ , conditionally on a conjecture of Sutherland. We likewise determine when there exists such a pair (K, E) for which the image of the associated mod- $$\ell $$ ℓ Galois representation is contained in a Cartan subgroup or its normalizer. We do the same under the stronger assumption that E is defined over $$\mathbb {Q}$$ Q .en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-018-0097-yen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleCartan images and $$\ell $$ ℓ -torsion points of elliptic curves with rational j-invarianten_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2018 Feb 20;4(1):12en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:18:22Z
dc.language.rfc3066en
dc.rights.holderSpringerNature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:18:22Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record