Show simple item record

dc.contributor.authorIskander, Jonas
dc.contributor.authorJain, Vanshika
dc.contributor.authorTalvola, Victoria
dc.date.accessioned2021-09-20T17:17:14Z
dc.date.available2021-09-20T17:17:14Z
dc.date.issued2020-04-21
dc.identifier.urihttps://hdl.handle.net/1721.1/131477
dc.description.abstractAbstract The partition function p(n) has been a testing ground for applications of analytic number theory to combinatorics. In particular, Hardy and Ramanujan invented the “circle method” to estimate the size of p(n), which was later perfected by Rademacher who obtained an exact formula. Recently, Chan and Wang considered the fractional partition functions, defined for $$\alpha \in {\mathbb {Q}}$$α∈Q by $$\sum _{n = 0}^\infty p_{\alpha }(n)x^n := \prod _{k=1}^\infty (1-x^k)^{-\alpha }$$∑n=0∞pα(n)xn:=∏k=1∞(1-xk)-α. In this paper we use the Rademacher circle method to find an exact formula for $$p_\alpha (n)$$pα(n) and study its implications, including log-concavity and the higher-order generalizations (i.e., the Turán inequalities) that $$p_\alpha (n)$$pα(n) satisfies.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-020-00195-0en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleExact formulae for the fractional partition functionsen_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2020 Apr 21;6(2):20en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:18:33Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:18:33Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record