Show simple item record

dc.contributor.authorIskander, Jonas
dc.contributor.authorJain, Vanshika
dc.date.accessioned2021-09-20T17:17:14Z
dc.date.available2021-09-20T17:17:14Z
dc.date.issued2020-06-09
dc.identifier.urihttps://hdl.handle.net/1721.1/131479
dc.description.abstractAbstract We present a method for proving that Jensen polynomials associated with functions in the $$\delta $$δ-Laguerre-Pòlya class have all real roots, and demonstrate how it can be used to construct new functions belonging to the Laguerre–Pòlya class. As an application, we confirm a conjecture of Ono, which asserts that the Jensen polynomials associated with the first term of the Hardy–Ramanujan–Rademacher series formula for the partition function are always hyperbolic.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-020-00202-4en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleHyperbolicity of Appell polynomials of functions in the $$\delta $$δ-Laguerre–Pòya classen_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2020 Jun 09;6(2):23en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:18:38Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:18:38Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record