MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matrix completion with nonconvex regularization: spectral operators and scalable algorithms

Author(s)
Mazumder, Rahul; Saldana, Diego; Weng, Haolei
Thumbnail
Download11222_2020_9939_ReferencePDF.pdf (3.256Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract In this paper, we study the popularly dubbed matrix completion problem, where the task is to “fill in” the unobserved entries of a matrix from a small subset of observed entries, under the assumption that the underlying matrix is of low rank. Our contributions herein enhance our prior work on nuclear norm regularized problems for matrix completion (Mazumder et al. in J Mach Learn Res 1532(11):2287–2322, 2010) by incorporating a continuum of nonconvex penalty functions between the convex nuclear norm and nonconvex rank functions. Inspired by Soft-Impute (Mazumder et al. 2010; Hastie et al. in J Mach Learn Res, 2016), we propose NC-Impute—an EM-flavored algorithmic framework for computing a family of nonconvex penalized matrix completion problems with warm starts. We present a systematic study of the associated spectral thresholding operators, which play an important role in the overall algorithm. We study convergence properties of the algorithm. Using structured low-rank SVD computations, we demonstrate the computational scalability of our proposal for problems up to the Netflix size (approximately, a 500,000 $$\times $$× 20,000 matrix with $$10^8$$108 observed entries). We demonstrate that on a wide range of synthetic and real data instances, our proposed nonconvex regularization framework leads to low-rank solutions with better predictive performance when compared to those obtained from nuclear norm problems. Implementations of algorithms proposed herein, written in the R language, are made available on github.
Date issued
2020-03-14
URI
https://hdl.handle.net/1721.1/131497
Department
Sloan School of Management
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.