MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local Algorithms for Sparse Spanning Graphs

Author(s)
Levi, Reut; Ron, Dana; Rubinfeld, Ronitt
Thumbnail
Download453_2019_612_ReferencePDF.pdf (578.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider a relaxed version of this problem in the setting of local algorithms. The relaxation is that the constructed subgraph is a sparse spanning subgraph containing at most $$(1+\epsilon )n$$(1+ϵ)n edges (where n is the number of vertices and $$\epsilon $$ϵ is a given approximation/sparsity parameter). In the local setting, the goal is to quickly determine whether a given edge e belongs to such a subgraph, without constructing the whole subgraph, but rather by inspecting (querying) the local neighborhood of e. The challenge is to maintain consistency. That is, to provide answers concerning different edges according to the same spanning subgraph. We first show that for general bounded-degree graphs, the query complexity of any such algorithm must be $$\Omega (\sqrt{n})$$Ω(n). This lower bound holds for constant-degree graphs that have high expansion. Next we design an algorithm for (bounded-degree) graphs with high expansion, obtaining a result that roughly matches the lower bound. We then turn to study graphs that exclude a fixed minor (and are hence non-expanding). We design an algorithm for such graphs, which may have an unbounded maximum degree. The query complexity of this algorithm is $$\mathrm{poly}(1/\epsilon , h)$$poly(1/ϵ,h) (independent of n and the maximum degree), where h is the number of vertices in the excluded minor. Though our two algorithms are designed for very different types of graphs (and have very different complexities), on a high-level there are several similarities, and we highlight both the similarities and the differences.
Date issued
2019-08-03
URI
https://hdl.handle.net/1721.1/131506
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.