MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Characteristic Length for L-SIAC Filtering of FEM Data

Author(s)
Jallepalli, Ashok; Haimes, Robert; Kirby, Robert M
Thumbnail
Download10915_2018_868_ReferencePDF.pdf (27.40Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Treating discontinuities at element boundaries is a significant problem in understanding high-order FEM simulation data since the physics used to model the simulation is often continuous. Recently, the family of SIAC filters, especially the L-SIAC filter, has been gaining popularity for its use in postprocessing. The computational math community, with its focus on improving the theoretical aspects of the SIAC filter, has applied the filter only on simple, fairly uniform unstructured meshes, where the largest element in the mesh is less than or equal to twice the smallest element. In many engineering applications, the unstructured meshes have varying orders of mesh resolution, but there is no literature for adapting the characteristic length of the SIAC filter to address these real-world simulation data. The central contribution of this paper is an algorithm used to calculate the characteristic length dynamically at any point in the mesh. We demonstrate that our approach has a lower error and is computationally faster than using maximum edge length over the mesh.
Date issued
2018-11-16
URI
https://hdl.handle.net/1721.1/131516
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.