MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The CUORE Pulse Tube Noise Cancellation Technique

Author(s)
Dompè, V.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Di Domizio, S.; Fantini, G.; Gorla, P.; Marini, L.; Nucciotti, A.; Nutini, I.; Rusconi, C.; Schmidt, B.; Welliver, B.; ... Show more Show less
Thumbnail
Download10909_2020_2435_ReferencePDF.pdf (5.282Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract The 1-ton-scale CUORE detector is made of 988 $${{{\hbox {TeO}}}}_2$$ TeO 2 crystals operated as cryogenic bolometers at a working temperature of $$\sim 10{{{\hbox { mK}}}}$$ ∼ 10 mK . In order to provide the necessary cooling power at 4 K stage, a total of five pulse tube (PT) refrigerators are used. The PTs make the cryogenic system reliable and stable, but have the downside that mechanical vibrations at low frequencies (1.4 Hz and related harmonics) are injected into the experimental apparatus. An active noise cancellation technique has been developed in order to reduce such effect by taking advantage from the coherent interference of the pressure oscillations originated by the different PTs. The technique that will be presented consists in controlling the relative phases of the pressure waves running inside the CUORE PT lines, in order to achieve the lowest detector noise. By reducing the power of PT harmonics by a factor up to $$10^4$$ 10 4 , it drastically suppresses the overall noise RMS on the CUORE detector. In the following, we demonstrate the reliability and effectiveness of the technique, showing that the optimization of the detector noise level is possible in different experimental conditions.
Date issued
2020-03-24
URI
https://hdl.handle.net/1721.1/131525
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.