Show simple item record

dc.contributor.authorGalashin, Pavel
dc.contributor.authorPylyavskyy, Pavlo
dc.date.accessioned2022-02-09T20:13:06Z
dc.date.available2021-09-20T17:20:17Z
dc.date.available2022-02-09T20:13:06Z
dc.date.issued2019-03-13
dc.identifier.issn1420-9020
dc.identifier.urihttps://hdl.handle.net/1721.1/131536.2
dc.description.abstractAbstract Birational toggling on Gelfand–Tsetlin patterns appeared first in the study of geometric crystals and geometric Robinson–Schensted–Knuth correspondence. Based on these birational toggle relations, Einstein and Propp introduced a discrete dynamical system called birational rowmotion associated with a partially ordered set. We generalize birational rowmotion to the class of arbitrary strongly connected directed graphs, calling the resulting discrete dynamical system the R-system. We study its integrability from the points of view of singularity confinement and algebraic entropy. We show that in many cases, singularity confinement in an R-system reduces to the Laurent phenomenon either in a cluster algebra, or in a Laurent phenomenon algebra, or beyond both of those generalities, giving rise to many new sequences with the Laurent property possessing rich groups of symmetries. Some special cases of R-systems reduce to Somos and Gale-Robinson sequences.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s00029-019-0470-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleR-systemsen_US
dc.typeArticleen_US
dc.identifier.citationSelecta Mathematica. 2019 Mar 13;25(2):22en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalSelecta Mathematicaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:11:17Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:11:17Z
mit.journal.volume25en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version