dc.contributor.author | Neguț, Andrei | |
dc.date.accessioned | 2021-09-20T17:20:18Z | |
dc.date.available | 2021-09-20T17:20:18Z | |
dc.date.issued | 2019-05-15 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/131538 | |
dc.description.abstract | Abstract
We consider the algebra of Hecke correspondences (elementary transformations at a single point) acting on the algebraic K-theory groups of the moduli spaces of stable sheaves on a smooth projective surface S. We derive quadratic relations between the Hecke correspondences, and compare the algebra they generate with the Ding–Iohara–Miki algebra (at a suitable specialization of parameters), as well as with a generalized shuffle algebra. | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00029-019-0481-z | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer International Publishing | en_US |
dc.title | Shuffle algebras associated to surfaces | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Selecta Mathematica. 2019 May 15;25(3):36 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-09-24T21:11:28Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer Nature Switzerland AG | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2020-09-24T21:11:28Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | |