MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Small cap decouplings

Author(s)
Demeter, Ciprian; Guth, Larry; Wang, Hong
Thumbnail
Download39_2020_541_ReferencePDF.pdf (558.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We develop a toolbox for proving decouplings into boxes with diameter smaller than the canonical scale. As an application of this new technique, we solve three problems for which earlier methods have failed. We start by verifying the small cap decoupling for the parabola. Then we find sharp estimates for exponential sums with small frequency separation on the moment curve in $$\mathbb {R}^3$$ R 3 . This part of the work relies on recent improved Kakeya-type estimates for planar tubes, as well as on new multilinear incidence bounds for plates and planks. We also combine our method with the recent advance on the reverse square function estimate, in order to prove small cap decoupling into square-like caps for the two dimensional cone. The Appendix by Roger Heath-Brown contains an application of the new exponential sum estimates for the moment curve, to the Riemann zeta-function.
Date issued
2020-08-06
URI
https://hdl.handle.net/1721.1/131542
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.