MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enabling numerically exact local solver for waveform inversion—a low-rank approach

Author(s)
Kumar, Rajiv; Willemsen, Bram; Herrmann, Felix J; Malcolm, Alison
Thumbnail
Download10596_2019_9832_ReferencePDF.pdf (5.417Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract As in many fields, in seismic imaging, the data in the field is collected over a relatively large medium even though only a part of that medium is truly of interest. This results in significant waste in computation as a typical inversion algorithm requires many solutions of the wave equation throughout the entire domain, even if only a small part of the domain is being updated. One way to mitigate this is to use a numerically exact local wave equation solver to perform waveform inversions in an area of interest, where the idea is to compute accurate solutions of the wave equation within a subdomain of interest. Although such solvers exist, many require the computation of Green’s function matrices in the background domain. For large-scale seismic data acquisition, the computation of the Green’s function matrices is prohibitively expensive since it involves solving thousands of partial differential equations in the background model. To mitigate this, in this work, we propose to exploit the low-rank structure of the full subsurface Green’s function. Using carefully selected 2D stylized models, we first show that the full subsurface Green’s function tensor organized as a matrix exhibits the low-rank structure in a transform domain. We then propose a randomized singular value decomposition–based framework to compute the low-rank approximation of the Green’s functions, where the cost of wave equation solves depends on the rank of the underlying Green’s function matrix instead of the number of grid points at the surface of the background model and on the boundary of the local domain. Next, we validate the proposed framework by performing time-lapse waveform inversion using the 2D Marmousi model. Finally, we demonstrate a rank-minimization–based framework to compute the low-rank factorized form of the Green’s function matrices in large-scale 3D seismic data acquisition.
Date issued
2019-06-27
URI
https://hdl.handle.net/1721.1/131546
Department
Massachusetts Institute of Technology. Earth Resources Laboratory
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.