MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convergence of the undrained split iterative scheme for coupling flow with geomechanics in heterogeneous poroelastic media

Author(s)
Almani, T.; Manea, A.; Kumar, K.; Dogru, A. H
Thumbnail
Download10596_2019_9860_ReferencePDF.pdf (523.0Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Recently, an accurate coupling between subsurface flow and reservoir geomechanics has received more attention in both academia and industry. This stems from the fact that incorporating a geomechanics model into upstream flow simulation is critical for accurately predicting wellbore instabilities and hydraulic fracturing processes. One of the recently introduced iterative coupling algorithms to couple flow with geomechanics is the undrained split iterative coupling algorithm as reported by Kumar et al. (2016) and Mikelic and Wheeler (Comput. Geosci. 17: 455–461 2013). The convergence of this scheme is established in Mikelic and Wheeler (Comput. Geosci. 17:455–461 2013) for the single rate iterative coupling algorithm and in Kumar et al. (2016) for the multirate iterative coupling algorithm, in which the flow takes multiple finer time steps within one coarse mechanics time step. All previously established results study the convergence of the scheme in homogeneous poroelastic media. In this work, following the approach in Almani et al. (2017), we extend these results to the case of heterogeneous poroelastic media, in which each grid cell is associated with its own set of flow and mechanics parameters for both the single rate and multirate schemes. Second, following the approach in Almani et al. (Comput. Geosci. 21:1157–1172 2017), we establish a priori error estimates for the single rate case of the scheme in homogeneous poroelastic media. To the best of our knowledge, this is the first rigorous and complete mathematical analysis of the undrained split iterative coupling scheme in heterogeneous poroelastic media.
Date issued
2019-08-08
URI
https://hdl.handle.net/1721.1/131547
Department
Massachusetts Institute of Technology. Earth Resources Laboratory; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.