MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fourier transform for the quantum Toda lattice

Author(s)
Lonergan, Gus
Thumbnail
Download29_2018_419_ReferencePDF.pdf (344.4Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We answer a question of V. Drinfeld by constructing an ‘algebraic Fourier transform’ for the quantum Toda lattice of a complex reductive algebraic group G, which extends the classical ‘algebraic Fourier transform’ for its subalgebra $$D(T)^W$$ D ( T ) W of Weyl group invariant differential operators on a maximal torus. The proof is contained in Sect. 2 and relies on a result of Bezrukavnikov–Finkelberg realizing the quantum Toda lattice as the equivariant homology of the dual affine Grassmannian; the Fourier transform boils down to nothing more than the duality between homology and cohomology. In Sect. 3, we compare our result with a related result of V. Ginzburg, and explain the apparent discrepancy by showing that W-equivariant quasicoherent sheaves on $${{\mathrm{\mathfrak {t}}}}^*$$ t ∗ descend to $${{\mathrm{\mathfrak {t}}}}^*//W$$ t ∗ / / W if they descend to $${{\mathrm{\mathfrak {t}}}}^*/\langle s_i\rangle $$ t ∗ / ⟨ s i ⟩ for every simple reflection $$s_i$$ s i of W.
Date issued
2018-06-05
URI
https://hdl.handle.net/1721.1/131565
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.