Show simple item record

dc.contributor.authorBerk, Lauren
dc.contributor.authorBertsimas, Dimitris
dc.date.accessioned2021-09-20T17:20:25Z
dc.date.available2021-09-20T17:20:25Z
dc.date.issued2019-01-01
dc.identifier.urihttps://hdl.handle.net/1721.1/131566
dc.description.abstractAbstract This paper addresses the sparse principal component analysis (SPCA) problem for covariance matrices in dimension n aiming to find solutions with sparsity k using mixed integer optimization. We propose a tailored branch-and-bound algorithm, Optimal-SPCA, that enables us to solve SPCA to certifiable optimality in seconds for $$n = 100$$ n = 100  s, $$k=10$$ k = 10  s. This same algorithm can be applied to problems with $$n=10{,}000\,\mathrm{s}$$ n = 10 , 000 s or higher to find high-quality feasible solutions in seconds while taking several hours to prove optimality. We apply our methods to a number of real data sets to demonstrate that our approach scales to the same problem sizes attempted by other methods, while providing superior solutions compared to those methods, explaining a higher portion of variance and permitting complete control over the desired sparsity. The software that was reviewed as part of this submission has been given the DOI (digital object identifier) https://doi.org/10.5281/zenodo.2027898 .en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s12532-018-0153-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleCertifiably optimal sparse principal component analysisen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:06:29Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:06:29Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record