Show simple item record

dc.contributor.authorCuenca, Cesar
dc.contributor.authorGorin, Vadim
dc.date.accessioned2021-09-20T17:20:25Z
dc.date.available2021-09-20T17:20:25Z
dc.date.issued2020-06-12
dc.identifier.urihttps://hdl.handle.net/1721.1/131567
dc.description.abstractAbstract The classification of irreducible, spherical characters of the infinite-dimensional unitary/orthogonal/symplectic groups can be obtained by finding all possible limits of normalized, irreducible characters of the corresponding finite-dimensional groups, as the rank tends to infinity. We solve a q-deformed version of the latter problem for orthogonal and symplectic groups, extending previously known results for the unitary group. The proof is based on novel determinantal and double-contour integral formulas for the q-specialized characters.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00029-020-00572-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleq-Deformed character theory for infinite-dimensional symplectic and orthogonal groupsen_US
dc.typeArticleen_US
dc.identifier.citationSelecta Mathematica. 2020 Jun 12;26(3):40en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:11:45Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:11:45Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record