dc.contributor.author | Carlier, Guillaume | |
dc.contributor.author | Chernozhukov, Victor | |
dc.contributor.author | De Bie, Gwendoline | |
dc.contributor.author | Galichon, Alfred | |
dc.date.accessioned | 2021-09-20T17:28:49Z | |
dc.date.available | 2021-09-20T17:28:49Z | |
dc.date.issued | 2020-08-12 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/131584 | |
dc.description.abstract | Abstract
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension due to Carlier et al. (Ann Statist 44(3):1165–92, 2016,; J Multivariate Anal 161:96–102, 2017) which relates vector quantile regression to an optimal transport problem with mean independence constraints. We introduce an entropic regularization of this problem, implement a gradient descent numerical method and illustrate its feasibility on univariate and bivariate examples. | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00181-020-01919-y | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Vector quantile regression and optimal transport, from theory to numerics | en_US |
dc.type | Article | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Economics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-08-13T04:01:23Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2020-08-13T04:01:23Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | |