MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dimension transformation formula for conformal maps into the complement of an SLE curve

Author(s)
Gwynne, Ewain; Holden, Nina; Miller, Jason
Thumbnail
Download440_2019_Article_952.pdf (412.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We prove a formula relating the Hausdorff dimension of a deterministic Borel subset of $${\mathbb {R}}$$R and the Hausdorff dimension of its image under a conformal map from the upper half-plane to a complementary connected component of an $$\hbox {SLE}_\kappa $$SLEκ curve for $$\kappa \not =4$$κ≠4. Our proof is based on the relationship between SLE and Liouville quantum gravity together with the one-dimensional KPZ formula of Rhodes and Vargas (ESAIM Probab Stat 15:358–371, 2011) and the KPZ formula of Gwynne et al. (Ann Probab, 2015). As an intermediate step we prove a KPZ formula which relates the Euclidean dimension of a subset of an $$\hbox {SLE}_\kappa $$SLEκ curve for $$\kappa \in (0,4)\cup (4,8)$$κ∈(0,4)∪(4,8) and the dimension of the same set with respect to the $$\gamma $$γ-quantum natural parameterization of the curve induced by an independent Gaussian free field, $$\gamma = \sqrt{\kappa }\wedge (4/\sqrt{\kappa })$$γ=κ∧(4/κ).
Date issued
2019-11-02
URI
https://hdl.handle.net/1721.1/131627
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.