Show simple item record

dc.contributor.authorAartsen, M. G
dc.contributor.authorAckermann, M.
dc.contributor.authorAdams, J.
dc.contributor.authorAguilar, J. A
dc.contributor.authorAhlers, M.
dc.contributor.authorAhrens, M.
dc.contributor.authorAlispach, C.
dc.contributor.authorAndeen, K.
dc.contributor.authorAnderson, T.
dc.contributor.authorAnsseau, I.
dc.contributor.authorAnton, G.
dc.contributor.authorArgüelles, C.
dc.contributor.authorAuffenberg, J.
dc.contributor.authorAxani, S.
dc.contributor.authorBackes, P.
dc.contributor.authorBagherpour, H.
dc.contributor.authorBai, X.
dc.contributor.authorBarbano, A.
dc.contributor.authorBarwick, S. W
dc.contributor.authorBaum, V.
dc.date.accessioned2021-09-20T17:29:13Z
dc.date.available2021-09-20T17:29:13Z
dc.date.issued2020-01-04
dc.identifier.urihttps://hdl.handle.net/1721.1/131637
dc.description.abstractAbstract The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above $$\sim 1\,\mathrm {GeV}$$∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of $$p_\mathrm {IO} = 15.3\%$$pIO=15.3% and $$\mathrm {CL}_\mathrm {s}=53.3\%$$CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of $$\delta _\mathrm {CP}$$δCP and obtained from energies $$E_\nu \gtrsim 5\,\mathrm {GeV}$$Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-019-7555-0en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDevelopment of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore dataen_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal C. 2020 Jan 04;80(1):9en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-26T12:47:25Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-06-26T12:47:25Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record