MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Horizon constraints on holographic Green’s functions

Author(s)
Blake, Mike; Davison, Richard A; Vegh, David
Thumbnail
Download13130_2020_Article_12150.pdf (863.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We explore a new class of general properties of thermal holographic Green’s functions that can be deduced from the near-horizon behaviour of classical perturbations in asymptotically anti-de Sitter spacetimes. We show that at negative imaginary Matsubara frequencies and appropriate complex values of the wavenumber the retarded Green’s functions of generic operators are not uniquely defined, due to the lack of a unique ingoing solution for the bulk perturbations. From a boundary perspective these ‘pole-skipping’ points correspond to locations in the complex frequency and momentum planes at which a line of poles of the retarded Green’s function intersects with a line of zeroes. As a consequence the dispersion relations of collective modes in the boundary theory at energy scales ω ∼ T are directly constrained by the bulk dynamics near the black-brane horizon. For the case of conserved U (1) current and energy-momentum tensor operators we give examples where the dispersion relations of hydrodynamic modes pass through a succession of pole- skipping points as real wavenumber is increased. We discuss implications of our results for transport, hydrodynamics and quantum chaos in holographic systems.
Date issued
2020-01-14
URI
https://hdl.handle.net/1721.1/131660
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2020 Jan 14;2020(1):77
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.