Show simple item record

dc.contributor.authorCifuentes, Diego
dc.contributor.authorHarris, Corey
dc.contributor.authorSturmfels, Bernd
dc.date.accessioned2021-09-20T17:29:30Z
dc.date.available2021-09-20T17:29:30Z
dc.date.issued2019-05-15
dc.identifier.urihttps://hdl.handle.net/1721.1/131668
dc.description.abstractAbstract Consider the problem of minimizing a quadratic objective subject to quadratic equations. We study the semialgebraic region of objective functions for which this problem is solved by its semidefinite relaxation. For the Euclidean distance problem, this is a bundle of spectrahedral shadows surrounding the given variety. We characterize the algebraic boundary of this region and we derive a formula for its degree.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10107-019-01399-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleThe geometry of SDP-exactness in quadratic optimizationen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-26T12:53:39Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-06-26T12:53:39Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record