MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scattering equations: from projective spaces to tropical grassmannians

Author(s)
Cachazo, Freddy; Early, Nick; Guevara, Alfredo; Mizera, Sebastian
Thumbnail
Download13130_2019_Article_10717.pdf (561.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We introduce a natural generalization of the scattering equations, which connect the space of Mandelstam invariants to that of points on ℂℙ1, to higher-dimensional projective spaces ℂℙk − 1. The standard, k = 2 Mandelstam invariants, sab, are generalized to completely symmetric tensors s a 1 a 2 … a k $$ {\mathrm{s}}_{a_1{a}_2\dots {a}_k} $$ subject to a ‘massless’ condition s a 1 a 2 … a k − 2 b b = 0 $$ {\mathrm{s}}_{a_1{a}_2\dots {a}_{k-2}bb}=0 $$ and to ‘momentum conservation’. The scattering equations are obtained by constructing a potential function and computing its critical points. We mainly concentrate on the k = 3 case: study solutions and define the generalization of biadjoint scalar amplitudes. We compute all ‘biadjoint amplitudes’ for (k, n) = (3, 6) and find a direct connection to the tropical Grassmannian. This leads to the notion of k = 3 Feynman diagrams. We also find a concrete realization of the new kinematic spaces, which coincides with the spinor-helicity formalism for k = 2, and provides analytic solutions analogous to the MHV ones.
Date issued
2019-06-11
URI
https://hdl.handle.net/1721.1/131678
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2019 Jun 11;2019(6):39
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.