dc.contributor.author | Bongiovanni, Eliot | |
dc.contributor.author | Diaz, Alejandro | |
dc.contributor.author | Kakkar, Arjun | |
dc.contributor.author | Sothanaphan, Nat | |
dc.date.accessioned | 2021-09-20T17:30:06Z | |
dc.date.available | 2021-09-20T17:30:06Z | |
dc.date.issued | 2019-07-10 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/131743 | |
dc.description.abstract | Abstract
We determine the least-area unit-volume tetrahedral tile of Euclidean space, without the constraint of Gallagher et al. that the tiling uses only orientation-preserving images of the tile. The winner remains Sommerville’s type 4v. | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s10711-019-00465-x | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer Netherlands | en_US |
dc.title | The least-area tetrahedral tile of space | en_US |
dc.type | Article | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-09-24T20:34:03Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer Nature B.V. | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2020-09-24T20:34:03Z | |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | |