MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leveraging sUAS for Infrastructure Network Exploration and Failure Isolation

Author(s)
Lee, Andrew C; Dahan, Mathieu; Weinert, Andrew J; Amin, Saurabh
Thumbnail
Download10846_2018_838_ReferencePDF.pdf (10.10Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Large-scale infrastructures are prone to simultaneous faults when struck by a natural or man-made event. The current operating procedure followed by many utilities needs improvement, both in terms of monitoring performance and time to repair. Motivated by the recent technological progress on small Unmanned Aerial Systems (sUAS), we propose a practical framework to integrate the monitoring capabilities of sUAS into standard utility repair operations. A key aspect of our framework is the use of monitoring locations for sUAS-based inspection of failures within a certain spatial zone (called a localization set). This set is defined based on the alerts from fixed sensors or customer calls. The positioning of monitoring locations is subject to several factors such as sUAS platform, network topology, and airspace restrictions. We formulate the problem of minimizing the maximum time to respond to all failures by routing repair vehicles to various localization sets and exploring these sets using sUAS. The formulation admits a natural decomposition into two sub-problems: the sUAS Network Exploration Problem (SNEP); and the Repair Vehicle Routing Problem (RVRP). Standard solvers can be used to solve the RVRP in a scalable manner; however, solving the SNEP for each localization set can be computationally challenging. To address this limitation, we propose a set cover based heuristic to approximately solve the SNEP. We implement the overall framework on a benchmark network.
Date issued
2018-04-26
URI
https://hdl.handle.net/1721.1/131764
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Center for Computational Engineering; Lincoln Laboratory
Publisher
Springer Netherlands

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.