MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Control of linear instabilities by dynamically consistent order reduction on optimally time-dependent modes

Author(s)
Blanchard, Antoine; Mowlavi, Saviz; Sapsis, Themistoklis P
Thumbnail
Download11071_2018_4720_ReferencePDF.pdf (1.482Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Identification and control of transient instabilities in high-dimensional dynamical systems remain a challenge because transient (non-normal) growth cannot be accurately captured by reduced-order modal analysis. Eigenvalue-based methods classify systems as stable or unstable on the sole basis of the asymptotic behavior of perturbations and therefore fail to predict any short-term characteristics of disturbances, including transient growth. In this paper, we leverage the power of the optimally time-dependent (OTD) modes, a set of time-evolving, orthonormal modes that capture directions in phase space associated with transient and persistent instabilities, to formulate a control law capable of suppressing transient and asymptotic growth around any fixed point of the governing equations. The control law is derived from a reduced-order system resulting from projecting the evolving linearized dynamics onto the OTD modes and enforces that the instantaneous growth of perturbations in the OTD-reduced tangent space be nil. We apply the proposed reduced-order control algorithm to several infinite-dimensional systems, including fluid flows dominated by normal and non-normal instabilities, and demonstrate unequivocal superiority of OTD control over classical modal control.
Date issued
2018-12-17
URI
https://hdl.handle.net/1721.1/131784
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer Netherlands

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.