MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ProSecCo: progressive sequence mining with convergence guarantees

Author(s)
Servan-Schreiber, Sacha; Riondato, Matteo; Zgraggen, Emanuel
Thumbnail
Download10115_2019_1393_ReferencePDF.pdf (2.439Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We present ProSecCo, an algorithm for the progressive mining of frequent sequences from large transactional datasets: It processes the dataset in blocks and it outputs, after having analyzed each block, a high-quality approximation of the collection of frequent sequences. ProSecCo can be used for interactive data exploration, as the intermediate results enable the user to make informed decisions as the computation proceeds. These intermediate results have strong probabilistic approximation guarantees and the final output is the exact collection of frequent sequences. Our correctness analysis uses the Vapnik–Chervonenkis (VC) dimension, a key concept from statistical learning theory. The results of our experimental evaluation of ProSecCo on real and artificial datasets show that it produces fast-converging high-quality results almost immediately. Its practical performance is even better than what is guaranteed by the theoretical analysis, and ProSecCo can even be faster than existing state-of-the-art non-progressive algorithms. Additionally, our experimental results show that ProSecCo uses a constant amount of memory, and orders of magnitude less than other standard, non-progressive, sequential pattern mining algorithms.
Date issued
2019-08-20
URI
https://hdl.handle.net/1721.1/131797
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer London

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.