β-decay spectrum, response function, and statistical model for neutrino mass measurements with the KATRIN experiment
Author(s)
Formaggio, J. A
Download10052_2019_Article_6686.pdf (3.047Mb)
Alternative title
Beta-decay spectrum, response function, and statistical model for neutrino mass measurements with the KATRIN experiment
Terms of use
Metadata
Show full item recordAbstract
The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to determine the effective electron neutrino mass m(v[subscript]e) with an unprecedented sensitivity of 0.2eV/c² (90% C.L.) by precision electron spectroscopy close to the endpoint of the β-decay of tritium. We present a consistent theoretical description of the β-electron energy spectrum in the endpoint region, an accurate model of the apparatus response function, and the statistical approaches suited to interpret and analyze tritium β-decay data observed with KATRIN with the envisaged precision. In addition to providing detailed analytical expressions for all formulae used in the presented model framework with the necessary detail of derivation, we discuss and quantify the impact of theoretical and experimental corrections on the measured m(ν[subscript]e). Finally, we outline the statistical methods for parameter inference and the construction of confidence intervals that are appropriate for a neutrino mass measurement with KATRIN. In this context, we briefly discuss the choice of the β-energy analysis interval and the distribution of measuring time within that range. ©2019
Date issued
2019-03Department
Massachusetts Institute of Technology. Laboratory for Nuclear Science; Massachusetts Institute of Technology. Department of PhysicsJournal
European physical journal C
Publisher
Springer Berlin Heidelberg
Citation
Kleesiek, M., et al., "β-decay spectrum, response function, and statistical model for neutrino mass measurements with the KATRIN experiment." European physical journal C 79 (2019): no. 204 doi 10.1140/epjc/s10052-019-6686-7 ©2019 Author(s)
Version: Final published version
ISSN
1434-6044
1434-6052
Collections
The following license files are associated with this item: