Show simple item record

dc.contributor.authorAker, M.
dc.contributor.authorAltenmüller, K.
dc.contributor.authorBeglarian, A.
dc.contributor.authorBehrens, J.
dc.contributor.authorBerlev, A.
dc.contributor.authorBesserer, U.
dc.contributor.authorBlaum, K.
dc.contributor.authorBlock, F.
dc.contributor.authorBobien, S.
dc.contributor.authorBornschein, B.
dc.contributor.authorBornschein, L.
dc.contributor.authorBouquet, H.
dc.contributor.authorBrunst, T.
dc.contributor.authorCaldwell, T. S
dc.contributor.authorChilingaryan, S.
dc.contributor.authorChoi, W.
dc.contributor.authorDebowski, K.
dc.contributor.authorDeffert, M.
dc.contributor.authorDescher, M.
dc.contributor.authorDíaz Barrero, D.
dc.date.accessioned2021-09-20T17:30:27Z
dc.date.available2021-09-20T17:30:27Z
dc.date.issued2020-09-04
dc.identifier.urihttps://hdl.handle.net/1721.1/131826
dc.description.abstractAbstract The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c $$^2$$ 2 by precisely measuring the endpoint region of the tritium $$\beta $$ β -decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-020-8278-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSuppression of Penning discharges between the KATRIN spectrometersen_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal C. 2020 Sep 04;80(9):821en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-12-20T04:50:32Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-12-20T04:50:32Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record