MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real orientations of Lubin–Tate spectra

Author(s)
Hahn, Jeremy; Shi, XiaoLin D
Thumbnail
Download222_2020_960_ReferencePDF.pdf (663.5Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We show that Lubin–Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application of the Goerss–Hopkins–Miller theorem to algebras with involution. For each height n, we compute the entire homotopy fixed point spectral sequence for $$E_n$$ E n with its $$C_2$$ C 2 -action given by the formal inverse. We study, as the height varies, the Hurewicz images of the stable homotopy groups of spheres in the homotopy of these $$C_2$$ C 2 -fixed points.
Date issued
2020-03-07
URI
https://hdl.handle.net/1721.1/131833
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.