Convergence analysis of multifidelity Monte Carlo estimation
Author(s)
Peherstorfer, Benjamin; Gunzburger, Max; Willcox, Karen
Download211_2018_945_ReferencePDF.pdf (301.4Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Abstract
The multifidelity Monte Carlo method provides a general framework for combining cheap low-fidelity approximations of an expensive high-fidelity model to accelerate the Monte Carlo estimation of statistics of the high-fidelity model output. In this work, we investigate the properties of multifidelity Monte Carlo estimation in the setting where a hierarchy of approximations can be constructed with known error and cost bounds. Our main result is a convergence analysis of multifidelity Monte Carlo estimation, for which we prove a bound on the costs of the multifidelity Monte Carlo estimator under assumptions on the error and cost bounds of the low-fidelity approximations. The assumptions that we make are typical in the setting of similar Monte Carlo techniques. Numerical experiments illustrate the derived bounds.
Date issued
2018-01-19Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsPublisher
Springer Berlin Heidelberg