Show simple item record

dc.contributor.authorBrendle, Simon
dc.contributor.authorChoi, Kyeongsu
dc.date.accessioned2021-09-20T17:30:32Z
dc.date.available2021-09-20T17:30:32Z
dc.date.issued2019-01-23
dc.identifier.urihttps://hdl.handle.net/1721.1/131839
dc.description.abstractAbstract A well-known question of Perelman concerns the classification of noncompact ancient solutions to the Ricci flow in dimension 3 which have positive sectional curvature and are $$\kappa $$ κ -noncollapsed. In this paper, we solve the analogous problem for mean curvature flow in $${\mathbb {R}}^3$$ R 3 , and prove that the rotationally symmetric bowl soliton is the only noncompact ancient solution of mean curvature flow in $${\mathbb {R}}^3$$ R 3 which is strictly convex and noncollapsed.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00222-019-00859-4en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleUniqueness of convex ancient solutions to mean curvature flow in $${\mathbb {R}}^3$$ R 3en_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T20:53:22Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T20:53:22Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record