Show simple item record

dc.contributor.authorCarpentier, Sylvain
dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor G
dc.contributor.authorValeri, Daniele
dc.contributor.authorvan de Leur, Johan
dc.date.accessioned2021-09-20T17:30:38Z
dc.date.available2021-09-20T17:30:38Z
dc.date.issued2020-08-04
dc.identifier.urihttps://hdl.handle.net/1721.1/131852
dc.description.abstractAbstract For each partition $$\underline{p}$$ p ̲ of an integer $$N\ge 2$$ N ≥ 2 , consisting of r parts, an integrable hierarchy of Lax type Hamiltonian PDE has been constructed recently by some of us. In the present paper we show that any tau-function of the $$\underline{p}$$ p ̲ -reduced r-component KP hierarchy produces a solution of this integrable hierarchy. Along the way we provide an algorithm for the explicit construction of the generators of the corresponding classical $$\mathcal {W}$$ W -algebra $$\mathcal {W}(\mathfrak {gl}_N,\underline{p})$$ W ( gl N , p ̲ ) , and write down explicit formulas for evolution of these generators along the commuting Hamiltonian flows.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00220-020-03817-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.title$$\underline{p}$$ p ̲ -reduced Multicomponent KP Hierarchy and Classical $$\mathcal {W}$$ W -algebras $$\mathcal {W}(\mathfrak {gl}_N,\underline{p})$$ W ( gl N , p ̲ )en_US
dc.typeArticleen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-11-04T04:25:28Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-11-04T04:25:28Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record