Show simple item record

dc.contributor.authorBertsekas, Dimitri P
dc.date.accessioned2021-09-20T17:30:42Z
dc.date.available2021-09-20T17:30:42Z
dc.date.issued2018-03-02
dc.identifier.urihttps://hdl.handle.net/1721.1/131865
dc.description.abstractAbstract In this paper we consider large fixed point problems and solution with proximal algorithms. We show that for linear problems there is a close connection between proximal iterations, which are prominent in numerical analysis and optimization, and multistep methods of the temporal difference type such as TD( $$\lambda $$ λ ), LSTD( $$\lambda $$ λ ), and LSPE( $$\lambda $$ λ ), which are central in simulation-based exact and approximate dynamic programming. One benefit of this connection is a new and simple way to accelerate the standard proximal algorithm by extrapolation towards a multistep iteration, which generically has a faster convergence rate. Another benefit is the potential for integration into the proximal algorithmic context of several new ideas that have emerged in the approximate dynamic programming context, including simulation-based implementations. Conversely, the analytical and algorithmic insights from proximal algorithms can be brought to bear on the analysis and the enhancement of temporal difference methods. We also generalize our linear case result to nonlinear problems that involve a contractive mapping, thus providing guaranteed and potentially substantial acceleration of the proximal and forward backward splitting algorithms at no extra cost. Moreover, under certain monotonicity assumptions, we extend the connection with temporal difference methods to nonlinear problems through a linearization approach.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10589-018-9990-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleProximal algorithms and temporal difference methods for solving fixed point problemsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:34:30Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:34:30Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record