Show simple item record

dc.contributor.authorBertsimas, Dimitris J
dc.contributor.authorLamperski, Jourdain
dc.contributor.authorPauphilet, Jean
dc.date.accessioned2022-07-15T19:57:57Z
dc.date.available2021-09-20T17:30:43Z
dc.date.available2022-07-15T19:57:57Z
dc.date.issued2019-08-17
dc.identifier.urihttps://hdl.handle.net/1721.1/131869.2
dc.description.abstractAbstract We consider the maximum likelihood estimation of sparse inverse covariance matrices. We demonstrate that current heuristic approaches primarily encourage robustness, instead of the desired sparsity. We give a novel approach that solves the cardinality constrained likelihood problem to certifiable optimality. The approach uses techniques from mixed-integer optimization and convex optimization, and provides a high-quality solution with a guarantee on its suboptimality, even if the algorithm is terminated early. Using a variety of synthetic and real datasets, we demonstrate that our approach can solve problems where the dimension of the inverse covariance matrix is up to 1000 s. We also demonstrate that our approach produces significantly sparser solutions than Glasso and other popular learning procedures, makes less false discoveries, while still maintaining state-of-the-art accuracy.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10107-019-01419-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleCertifiably optimal sparse inverse covariance estimationen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-10-16T03:22:28Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society
dspace.embargo.termsY
dspace.date.submission2020-10-16T03:22:27Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version