Show simple item record

dc.contributor.authorLi, Jiyou
dc.contributor.authorWan, Daqing
dc.date.accessioned2021-09-20T17:30:47Z
dc.date.available2021-09-20T17:30:47Z
dc.date.issued2018-07-11
dc.identifier.urihttps://hdl.handle.net/1721.1/131884
dc.description.abstractAbstract Let D be a subset of a finite commutative ring R with identity. Let $$f(x)\in R[x]$$ f ( x ) ∈ R [ x ] be a polynomial of degree d. For a nonnegative integer k, we study the number $$N_f(D,k,b)$$ N f ( D , k , b ) of k-subsets S in D such that $$\begin{aligned} \sum _{x\in S} f(x)=b. \end{aligned}$$ ∑ x ∈ S f ( x ) = b . In this paper, we establish several bounds for the difference between $$N_f(D,k, b)$$ N f ( D , k , b ) and the expected main term $$\frac{1}{|R|}{|D|\atopwithdelims ()k}$$ 1 | R | | D | k , depending on the nature of the finite ring R and f. For $$R=\mathbb {Z}_n$$ R = Z n , let $$p=p(n)$$ p = p ( n ) be the smallest prime divisor of n, $$|D|=n-c \ge C_dn p^{-\frac{1}{d}}\,+\,c$$ | D | = n - c ≥ C d n p - 1 d + c and $$f(x)=a_dx^d +\cdots +a_0\in \mathbb {Z}[x]$$ f ( x ) = a d x d + ⋯ + a 0 ∈ Z [ x ] with $$(a_d, \ldots , a_1, n)=1$$ ( a d , … , a 1 , n ) = 1 . Then $$\begin{aligned} \left| N_f(D, k, b)-\frac{1}{n}{n-c \atopwithdelims ()k}\right| \le {\delta (n)(n-c)+(1-\delta (n))\left( C_dnp^{-\frac{1}{d}}+c\right) +k-1\atopwithdelims ()k}, \end{aligned}$$ N f ( D , k , b ) - 1 n n - c k ≤ δ ( n ) ( n - c ) + ( 1 - δ ( n ) ) C d n p - 1 d + c + k - 1 k , answering an open question raised by Stanley (Enumerative combinatorics, 1997) in a general setting, where $$\delta (n)=\sum _{i\mid n, \mu (i)=-1}\frac{1}{i}$$ δ ( n ) = ∑ i ∣ n , μ ( i ) = - 1 1 i and $$C_d=e^{1.85d}$$ C d = e 1.85 d . Furthermore, if n is a prime power, then $$\delta (n) =1/p$$ δ ( n ) = 1 / p and one can take $$C_d=4.41$$ C d = 4.41 . Similar and stronger bounds are given for two more cases. The first one is when $$R=\mathbb {F}_q$$ R = F q , a q-element finite field of characteristic p and f(x) is general. The second one is essentially the well-known subset sum problem over an arbitrary finite abelian group. These bounds extend several previous results.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11139-018-0020-0en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleCounting polynomial subset sumsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:39:22Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:39:22Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record