MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tracking Microstructure Evolution in Complex Biaxial Strain Paths: A Bulge Test Methodology for the Scanning Electron Microscope

Author(s)
Plancher, E.; Qu, K.; Vonk, N.H.; Gorji, M.B.; Tancogne-Dejean, T.; Tasan, C.C.; ... Show more Show less
Thumbnail
Download11340_2019_538_ReferencePDF.pdf (2.144Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract In this work, a novel method is presented to track site-specific microstructure evolution in metallic materials deformed biaxially along proportional and complex strain paths. A miniaturized bulge test setup featuring a removable sample holder was designed to enable incremental measurements to be performed in a scanning electron microscope, by probing the same position on the sample at different deformation levels, with electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI) and other imaging modes. Validation experiments were performed at room temperature on samples prepared from commercial sheet metal (dual-phase steel) and foils (stainless steel). Local strain measurements with the digital image correlation technique confirmed that proportional strain paths with a strain ratio up to 5 can be investigated using elliptical dies in the bulge test holder. It is also shown how complex strain paths can be obtained using a combination of overlapping elliptical dies. Incremental EBSD and ECCI were conducted in configurations relevant for the multi-scale investigation of localized plasticity and damage mechanisms in dual-phase steel. Quantitative information regarding microstructure evolution (phase fractions, orientation fields, dislocation structures, etc.) and regarding local strain distributions could be successfully obtained. This type of data sheds light on underlying deformation mechanisms and provides opportunities to calibrate crystal plasticity models.
Date issued
2019-08-20
URI
https://hdl.handle.net/1721.1/131890
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.